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Abstract

Keywords:

This paper presents a market-based, multi-robot planning capability,
designed as part of a distributed, layered architecture for multi-robot
control and coordination. More specifically, we are developing an ex-
tension to the traditional three-layered robot architecture that enables
robots to interact directly at each layer — at the behavioral level, the
robots create distributed control loops; at the executive level, they syn-
chronize task execution; at the planning level, they use market-based
techniques to assign tasks and allocate resources. The market-based
planning layer of each robot has two main components: (1) a trader
that participates in the market, auctioning and bidding on tasks; (2) a
scheduler that determines task feasibility and cost for the trader, and
interacts with the executive layer for task execution. This paper focuses
on the planning level, detailing the architecture, our current implemen-
tation, and planned future extensions. We show how the architecture
(in particular, the planning layer) has been applied to a Mars explo-
ration scenario involving the characterization of scientifically “interest-
ing” rocks. We also present preliminary simulation results exploring
market and scenario parameters.

multi-robot control, market economy, stochastic scheduling, distributed
three-layered architecture, Mars exploration

1. Introduction

An architecture for multi-robot control and coordination must be able
to accommodate issues of synchronization and cooperation under a wide
range of conditions and at various levels of granularity and timescale. An
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important characteristic for a multi-robot architecture is the flexibility
to accommodate different levels of coordination and synchronization.
Equally important is the flexibility to take advantage of the resources
available to the system, as well as to accommodate the requirements and
constraints imposed on it, in order to provide efficient solutions.

In designing a multi-robot architecture, one must inevitably nego-
tiate the tradeoffs between centralized and distributed approaches. A
centralized system can make optimal decisions about subtle issues in-
volving many robots and many tasks. In contrast, a highly distributed
system can quickly respond to problems involving one (or a few) robots,
and is more robust to point failures and the changing dynamics of the
system. The flexibility to blend the advantages of both approaches is
another desirable trait in an architecture.

We are developing a multi-robot coordination architecture that ad-
dresses these issues, providing the flexibility to accommodate: (1) dif-
ferent granularities and timescales of synchronization and coordination;
(2) a wide range of system resources, constraints, and requirements while
producing reasonable solutions; and (3) the strengths of both distributed
and centralized approaches, allowing optimization (when required and
possible) while maintaining robustness and the ability to adapt to the
(changing) dynamics of the system.

The architecture is an extension of the traditional three-layered ap-
proach, which provides event handling at different levels of abstraction
through the use of behavioral, executive, and planning layers. Our ap-
proach extends the architecture to multiple robots by allowing robots to
interact directly at each layer (see Figure 1). This provides several ben-
efits, including: (1) plan construction and sharing using a distributed
market-based approach, providing for various degrees of optimization;
(2) explicit executive-level, inter-robot synchronization constraints; and
(3) distributed behavior-level feedback loops for both loosely- and tightly-
coupled coordination.

The focus of this paper is on the market-based planning mechanism for
allocating tasks and resources. It is a distributed mechanism that allows
for different levels of optimization in the initial allocation-auctions and, if
possible, during subsequent refinement-auctions. After first presenting
the major components of the architecture, we focus on the details of
the market-based planning layer, its two main components (traders and
schedulers) and the interactions between them. We present experimental
results from a Mars exploration scenario exploring some of the major
parameters of the market mechanism within very controlled round robin
auctions.
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2. Related Work

Our work blends the advantages of both centralized and distributed
approaches to multi-robot systems. Though inherently distributed, the
architecture allows the market-based planning layer to utilize different
optimization mechanisms which may be centralized to varying degrees.
In purely centralized approaches, a centralized plan details the actions
for each robot. For example, a planner might treat two 6 DOF arms as a
single 12 DOF system for the purpose of generating detailed trajectories
(Khatib, 1995). While this approach provides for close coordination,
it usually employs centralized monitoring and, thus, suffers from sin-
gle point failure and lack of local reactivity. At the other end of the
spectrum, in the distributed approach (Balch and Arkin, 1994; Mataric,
1992; Parker, 1998), each agent is autonomous, but there is usually no
explicit synchronization among the robots.

(Jennings and Kirkwood-Watts, 1998) have developed a distributed
executive for multi-robot coordination. The executive, based on a dis-
tributed dialect of Scheme, is similar to our executive language in the
types of synchronization constructs it supports. As with our work, this
enables robots to solve local coordination problems without having to
invoke a high-level planner.

Several researchers have investigated economy-based architectures ap-
plied to multi-agents systems (Sandholm and Lesser, 1995; Sycara and
Zeng, 1996; Wellman and Wurman, 1998), beginning with work on
the Contract Net (Smith, 1980). (Stentz and Dias, 1999) proposed a
market-based approach that aims to opportunistically introduce pock-
ets of centralized planning into a distributed system. (Thayer et al.,
2000), (Gerkey and Matari¢, 2001), and (Zlot et al., 2002) have since
presented market-based multi-robot coordination results. Our approach
differs in that the market-based planning mechanism is part of a larger
distributed three-layered architecture. Additionally, in our approach,
the market component of each robot is closely associated with a sched-
uler that schedules tasks, manages resource constraints, and calculates
costs, removing this burden from the market.

Our scheduling algorithm falls into the class of stochastic sampling al-
gorithms (Langley, 1992; Bresina, 1996; Ruml, 2001; Cicirello and Smith,
2002). These algorithms are memoryless, non-systematic, and make each
search decision randomly. The simplest of these algorithms, called it-
erative sampling, makes unbiased decisions at random (Langley, 1992).
More sophisticated approaches incorporate heuristics to bias the search.
Examples include Heuristic-Biased Stochastic Sampling (Bresina, 1996),
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and our value-biased variant called WHISTLING (Cicirello and Smith,
2002) used in our architecture’s planning layer.

Before presenting the details of our market-based approach, we first
describe the larger context in which it functions: our distributed three-
layered architecture.

3. Architecture Overview

Our multi-robot architecture is based on the layered approach that has
been adopted for many single-agent autonomous systems (Bonasso et al.,
1997; Muscettola et al., 1998; Simmons et al., 1997). These architectures
typically consist of a planning layer that decides how to achieve high-
level goals, an executive layer that sequences tasks and monitors task
execution, and a behavioral layer that interfaces to the robot’s sensors
and effectors.

Information and control flows up and down between layers. The plan-
ning layer sends plans to the executive, which further decomposes tasks
into subtasks and dispatches them based on the temporal constraints
imposed by the plan. Dispatching a task often involves enabling or dis-
abling various behaviors. The behaviors interact to control the robot,
sending back sensor data and status information. The executive informs
the planner when tasks are completed, and may further abstract sensor
data for use by the planner. The executive also monitors task execution:
in case of failure, it can try to recover or it can terminate the task and
request a new plan from the planner.

We extend this architectural concept to multiple robots in a relatively
straightforward way. Each robot is composed of a complete three-layered
architecture. In addition, each of the three layers can interact directly
with the same layer of other robots (Figure 1). Thus, each robot can act
autonomously at all times, but can coordinate (at multiple levels) with
other agents, when needed. By allowing each layer to interact directly
with its peers, we can form distributed feedback loops, operating at dif-
ferent levels of abstraction and at different timescales. In particular, the
behavioral layer coordinates behaviors, the executive layer coordinates
tasks, and the planning layer coordinates/schedules resources. In this
way, problems arising can be dealt with at the appropriate level, without
having to involve higher layers. This decreases latency and may increase
robustness.

The behavioral layer consists of real-time sensor/effector feedback
loops. By connecting the sensor behaviors of one robot to the effec-
tor behaviors of another, we can create efficient distributed servo loops
(Simmons et al., 2000). Similarly, by connecting effector behaviors to-
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Figure 1.  Layered multi-robot archi- Figure 2. Simulated Mars environ-
tecture ment with multiple rovers and rocks.

gether, we can create tightly coordinated controllers. Our implemen-
tation extends the Skill Manager of (Bonasso et al., 1997) to provide
for both intra- and inter-robot connections. Skills (behaviors) are con-
nected via input/output ports and operate in a data-flow fashion: when
a new input value arrives on a port, the skill runs an action code that
(optionally) produces outputs.

The executive layer has responsibility for hierarchically decomposing
tasks into subtasks, enforcing synchronization constraints between tasks
(both those imposed by the planner and those added during task de-
composition), monitoring task execution, and recovering from exceptions
(Simmons, 1994). Our executive layer is implemented using the Task De-
scription Language (TDL). TDL is an extension of C++ that contains
explicit syntax to support hierarchical task decomposition, task synchro-
nization, execution monitoring, and exception handling (Simmons and
Apfelbaum, 1998). Recently, we have extended TDL to handle task-level
coordination between robots transparently and to enable one robot to
spawn or terminate a task on another.

The following section provides more detail about the market and
scheduler components of the planning layer.

4. Planning Layer: Market and Scheduler

Our approach to task allocation and planning is based on a market
economy. An economy is essentially a population of agents coordinating
with each other to produce an aggregate set of goods. Market economies
are generally unencumbered by centralized planning, instead leaving in-
dividuals free to exchange goods and services and enter into contracts
as they see fit. Conspicuously absent from the market approach is a
rigid, top-down hierarchy. Instead, individuals organize themselves in
a way that is mutually beneficial. Despite the fact that individuals in
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the economy act only to advance their own self-interests, the aggregate
effect is a highly productive society.

We have developed a market mechanism, based on our work with
TraderBots (Stentz and Dias, 1999; Dias and Stentz, 2000; Dias and
Stentz, 2001), that is flexible enough to accommodate different auction
mechanisms (though in the current implementation, tasks are allocated
based on exchanges of single tasks between pairs of robots (Dias and
Stentz, 2001)). A robot/agent that needs a task performed announces
that it will auction off the task as a seller. Each buyer capable of per-
forming the task for a cost ¢, bids to do so for ¢ + €. The buyer accepts
the lowest bid, as long as it is cheaper than doing the task itself. If a
bid is accepted, the seller performs the task and pockets € as profit.

Each robot aims to maximize its individual profit (which often trans-
lates to minimizing individual cost where possible); however, since all
revenue is derived from satisfying team objectives, the robots self-interest
translates to global efficiency. Moreover, the robots can only increase
their profit by eliminating unnecessary waste (i.e., excess cost).

The market approach has a number strengths, including: the flexibil-
ity of allowing robots to cooperate and compete as necessary to accom-
plish a task; its amenability to learning new behaviors and strategies
during execution of complex global task; and its ability to deal oppor-
tunistically with dynamic environments.

In addition to the market component, or trader, of each robot, called
the RoboTrader, the market of our architecture also contains OpTraders,
traders that are similar in function except that: they are not associated
with a robot, they provide a user interface to the system, and they act
on behalf of the operators/users. When a user introduces a task into the
system, it is the OpTrader that decomposes the task into its components,
if necessary, and initially auctions off the task(s) while trying to minimize
cost. In the current implementation, RoboTraders are prevented from
participating in more than one external auction at a time. Furthermore,
RoboTraders will always set their own auction deadlines to expire after
any auction in which they are participating. These constraints ensure
that tasks can be costed independently and accurately.

The RoboTrader works closely with the other major component of the
planning layer: the scheduler. Following the market economy framework,
a scheduler associated with each robot is responsible for maintaining the
robot’s current agenda of accepted and pending tasks. The scheduler
plays a critical role both in the formation of bids and in the interaction
between the planning and executive layers. Before a RoboTrader can
bid on a new task, it must first ascertain from the scheduler whether
the task can in fact be feasibly undertaken (given resource/timing con-
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straints and the other tasks already in the schedule) and, if so, the cost.
Once a RoboTrader is awarded a task, it is added to the schedule and
now further constrains decisions to bid on other tasks. The scheduler is
responsible for sending the task to the executive so that it is executed
properly with respect to the other tasks that the robot must accom-
plish. Executing tasks may also be terminated and sold or rescheduled
to reduce costs.

The scheduler is faced with a limited amount of computation/time in
which to evaluate the cost for adding tasks to the schedule and the sav-
ings for removing them (both of which are needed by the RoboTrader).
Rather than attempt to ensure the optimality of the schedules produced,
we instead employ an incomplete, non-systematic stochastic search pro-
cedure with the goal of quickly finding solutions that are “good enough.”
Our search algorithm, used by the scheduler, is called Whistling (Cicirello
and Smith, 2002).

In the current implementation of the architecture, we are not con-
sidering temporal constraints between or among tasks. We also assume
that a robot can execute only one task, consuming all of the robot’s
resources. Given these constraints, the scheduling problems faced by
the scheduler are essentially traveling salesman problems (TSP). Each
task has a location and an estimated duration, and it is the job of the
scheduler to find a task sequence that minimizes the sum of the task
durations and total travel time.

It should be noted that our goal here is not to develop the next best
TSP algorithm. Rather, we have focussed on developing a search pro-
cedure that is flexible in design and will easily extend to other, more
difficult scheduling problems. In the future, we plan to include hard
time constraints and allow multiple overlapping resources and tasks in
the scheduling problem. The flexibility and anytime characteristics of
Whistling should help facilitate this extension.

The division of the planning layer of each robot into two components
(the scheduler and RoboTrader) provides a clean functional separation
that also highlights the flexibility of the architecture. The scheduler can
incorporate a range of different search heuristics (e.g., as functions of
the perceived drivers of task cost), and can be augmented to accommo-
date different resource constraints. The trader can be augmented with
various auction mechanisms, from the distributed mechanism of trades
between pairs of robots (currently implemented), to a more centralized
combinatorial exchange mechanism.

The next section presents our experimental Mars rock characterization
scenario, as well as results testing some of the basic parameters of our
market mechanism.
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5. Experiments and Results
5.1 Rock Characterization Task

Our Mars exploration scenario is premised on the notion of scientific
return, i.e., that a group of robots would be sent to Mars for the (po-
tentially) valuable information they gather and return to Earth. We
envision a scenario where a colony of heterogeneous robots is deployed
on Mars. Scientists on Earth communicate high-level task descriptions
to the colony (e.g., “find and gather data on several carbonate rocks”).
We assume that communications limitations (bandwidth, delays, black-
outs) necessitate highly autonomous robots, and preclude effective tele-
operation of the robots or micro-managing of task execution by the sci-
entists. The robots are therefore responsible for deciding which/how
tasks are to be accomplished based on, among other things, the tasks’
relative priorities. The goal for the robots is to utilize their time, re-
sources, and capabilities efficiently so as to provide the highest possible
scientific return on the tasks they are given.

In terms of the development and testing of our current system, we
have focussed on a characterize-region task that will fit within a broader
exploration scenario. In this task, a user/scientist specifies a region
on the Mars surface, indicating that rocks within that region are to be
characterized with an appropriate sensing instrument. The scientist may
also specify the locations of rocks, if known. With respect to testing, a
3D graphical simulator developed for the project currently provides the
“physical” robots and environment required (Figure 2), though, in the
future, we hope to use real robots as well.

5.2 Experimental Results

The goal of the experiments presented here was to examine the ef-
fects of some of the major parameters of our market-based planning
layer. These experiments represent some of the earliest empirical results
of our system, and as such, use a fairly simple experimental scenario
and tightly coordinated auction synchronization. All of the experiments
used the same initial setup: 6 rovers start clustered near the center of
a rock field; 1 OpTrader initially allocates 50 rocks with known loca-
tions. The RoboTraders and/or OpTrader participate in a round robin
series of auctions, where each trader has the exclusive right to hold
an auction during its turn. While not necessarily efficient or realistic,
the round robin auction-synchronization mechanism allows: reduction of
potentially confounding auction effects; the ability to determine auction
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quiescence (i.e., no auctions after a one or two rounds) and consequently
to delay execution until auction quiescence.

The specific experimental parameters we examined were:

e Maximum Awards Per Auction (M APA): the maximum number
of tasks awarded by the OpTrader in a single auction.

e No RoboTrader Auctions (NRTA): RoboTraders never auction-
ing their tasks.

e OpTrader Awards Randomly (OTrand): awards made randomly,
not based on bids.

e OpTrader Auctions First (OTfirst): the OpTrader auctioning off
all of its tasks before the RoboTraders auction any.

e OpTrader Auctions Normally (OTnorm): the OpTrader partic-
ipating in the round robin auctions normally.

e OpTrader Auctions After Quiescence (OTafter): the OpTrader
auctioning only if the previous round had no tasks awarded.

For each of the MAPA values of 1, 3, and 6, we performed experiments

with each of the five other parameters, giving 15 experimental combina-

tions.

We ran 5 trials of each combination, with the completion criterion that
all 50 rocks be characterized. The experimental data collected for each
trial included: the final total time cost of the solution and the number of
auctions required (Table 1). Auctions took 8 seconds each, and for each
trial were correlated to time-to-completion (data not presented) with
p =~ 0.98. In all experiments, task execution was delayed until auction
quiescence.

As a baseline for comparison with Table 1, we ran a number of exper-
iments with both NRTA and OTrand that consistently produced costs
of over 1200 across all three MAPA values. Also, experiments to find
an optimal solution to our problem using a genetic algorithms (GA)
approach produced a best total cost of 777.

5.3 Discussion

There are a number of general trends in the data that are notable in
Table 1. One trend is that the quality of the solution degrades (i.e., total
cost increases) as the MAPA value increases. The reasons for this is fairly
straightforward. In each auction in our system, the OpTrader never
awards more than a single task to each RoboTrader bidder, possibly
producing inefficiencies. For example, if the OpTrader awards three tasks
in a particular auction (MAPA value > 3), they are to three different
RoboTraders, when a better allocation might have had two of the tasks
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Mean Total Cost Mean Number of Auctions
MAPA 1 [ 3 [ 6 1 [ 3 ] 6
NRTA 794 805 967 50.0 17.0 9.0
(1.9) (6.0) | (11.8) (0) (0) (0)
OTrand 903 939 960 233.8 | 1034 69.4
(16.7) | (36.5) | (26.2) || (26.8) | (3.9) (5.5)
OTfirst 795 807 922 60.8 30.2 23.0
(4.6) (6.2) (3.6) (1.1) (2.7) (2.7)
OTnorm 796 804 848 279.6 | 111.8 67.6
2.8) | (7.1) | (209) || (3.6) | (5.3) (1.3)
OTafter 798 797 820 287.2 | 127.2 108.0
(4.7) (7.0) | (12.9) (9.1) (5.4) (3.1)

Table 1. Mean total cost, and mean number of auctions before market quiescence
and execution. Standard deviations in parentheses.

going to the same bidder. Thus, smaller MAPA values tend to lead to
better initial allocations, though more OpTrader auctions must be held.

A good solution, given the current limitations of our system, relies
heavily on the quality of the initial allocation made by the OpTrader
(i.e., with a low MAPA value). Clearly, the random allocation in the
OTrand experiments does not qualify. When MAPA=1, the allocations
provided by OTfirst, OTnorm, OTafter, are essentially equally good.
When the initial OpTrader allocation degrades (at MAPA values of 3
and 6), having the RoboTraders participating with the OpTrader in
round robin auctions improves the solution, as is evident from comparing
NRTA and OTfirst to OTnorm and OTafter.

A key tradeoff in the data is between the total cost of the solution,
the MAPA value, and the number of auctions required for the solution.
When MAPA=1, the OpTrader achieves an efficient solution in only
50.0 auctions. Adding many additional RoboTrader auctions does not
improve this solution. Similarly, in the MAPA=3 case, the OpTrader
achieves a good solution with few (i.e., 17.0) auctions. An improvement
requires many additional auctions (127.2 in the OTafter case). When
the MAPA value increases to 6, the overall solution quality degrades,
but the worth of performing significant numbers of RoboTrader auctions
increases.

6. Conclusions and Future Work

With these experiments, we have begun to probe some of the param-
eters and possibilities of our market-based planning mechanism. As our
results demonstrate, both the OpTrader’s initial allocation strategy and
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the use of RoboTrader auctions greatly impact the quality of solutions
obtained. It is our hope that these results will begin to provide an un-
derstanding of how to use our market-based planning layer effectively
under a broad set of domains and conditions.

In the future, we plan to expand the market mechanism of our archi-
tecture to allow for opportunistic optimization through the use a com-
binatorial exchanged mechanism and bids of bundled tasks, as opposed
to the current implementation with single-task bids. In addition, we
plan to expand the scheduler capabilities to handle absolute timing con-
straints on tasks, as well as overlapping tasks with multiple, differing
resource constraints. We will continue to examine the parameters of our
market-based planning mechanism, testing its flexibility, and exploring
the fundamental issues and tradeoffs that arise in the system.
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