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Abstract 

Solid Models are the critical data elements in mod- 
ern Computer-Aided Design (CAD) environments, describ- 
ing the shape and form of manufactured artifacts. Their 
growing ubiquity has created new problems in how to ef- 
fectively manage the many models that are now stored in 
the digital libraries for large design and manufacturing 
enterprises. Existing techniques from engineering litera- 
ture and industrial practice, such as group technology, rely 
on human-supervised encodings and classijication; tech- 
niques from the multimedia database and computer graph- 
ics/vision communities ofren ignore the manufacturing at- 
tributes most significant in the classijication of models. 

This paper. presents our approach to manufacturing 
similarly assessment of solid models of mechanical parts 
based on machining features. Our technical approach 
is three-fold: ( I )  perform machining feature extraction 
to map the solid model to a set of STEP AP 224 ma- 
chining features: (2)  construct a model dependency graph 
from the set of machining features; (3) find the near- 
est neighbors to the query graph using an iterative im- 
provement search across a database of other models. We 
also present empirical experiments to validate our ap- 
proach using our testbed, the National Design Repository 
(http://www. designrepository.org). 

The contribution of this research is the first fully auto- 
mated technique for machining feature-based comparisons 
of mechanical artifacts. We believe that this work can lead 
to radical changes in the way in which design data is man- 
aged in modern engineering enterprises. 
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1. Introduction 

We present an approach to comparing the manufacturing 
similarity of solid models of machined artifacts based on 
their machining features. Increasingly, manufacturing en- 
terprises must maintain vast digital libraries and databases 
of Computer-Aided Design (CAD) and Computer-Aided 
Process Planning (CAPP) knowledge. Such information in- 
cludes the parametric solid models of parts and assemblies, 
as well as Numeric Control (NC) machining programs, pro- 
duction plans and cost data. 

Our research goal is to develop methods to interrogate 
large knowledge-bases of solid models of machined artifact 
in order to enable variational process planning and cost esti- 
mation. This work is part of the National Design Repository 
project (http: //www.designrepository. org), 
which is an ongoing effort to collect and archive “open 
source” CAD data and solid models and develop data 
management technologies for handling engineering 
information. 

Given that we have a large Repository we wish to search, 
and a new solid model to use as a query, our technical ap- 
proach is three-fold: 

. 

1 .  Perform feature extraction to map the solid model 
to a set of STEP AP 224 machining features. 

If operating inside a CAD environment, one could plan 
to retain the design features as new models are cre- 
ated. However, as has been often noted, design fea- 
tures are not necessarily in one-to-one correspondence 
with manufacturing features. For legacy data and for 
solid models that are converted between modeling sys- 
tems, there may not be any readily available feature 
information. Our work uses automatic feature recogni- 
tion, based on the FBMach’ System from Allied Sig- 

, 

‘FBMach is the “Feature-Based Machining Husk,” and is a copyrighted 
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nal [4, 201 to generate feature data to be used in the 
indexing algorithms. 

2. Construct a model dependency graph from the set of 
machining features. 

Given the set of machining features for an artifact, 
our model dependency represent an intermediate data 
structure to be used to model feature interactions and 
dependencies. Our belief, which this paper empirically 
tests, is that machined parts with similar feature sets 
and similar feature interactions have a high probabil- 
ity of possessing similar manufacturing plans. Model 
dependency graphs capture the feature interactions in 
a given set of features. 

3. Find the nearest neighbors to the query model 
among those in the Design Repository. 

Based on the model dependency graphs, interroga- 
tion of the Repository becomes a task of comparing 
the model dependency graph of a query part to those 
in the database. The specific comparison that we 
are interested in is that of the largest common sub- 
graph. The general problem of determining the largest 
common subgraph for a given pair of graphs is NP- 
complete [ 141. However, in the context of our prob- 
lem, we observe: 

0 First, it is not necessary to find the largest com- 
mon subgraph: Since we are only concerned 
with similarity, i t  is simply necessary to find 
a “sufficiently” large common subgraph of two 
MDG’s to determine their similarity. Hence, 
we can use an iterative improvement algorithms 
for the largest common subgraph computation. 
Specifically, an iterative improvement search al- 
gorithm (a variant on hill-climbing/gradient de- 
scent search [36]) that exploits the feature infor- 
mation in the extracted machining features. 

Second, there is a great deal of domain knowl- 
edge present in the CAD model and in the ma- 
chining features that can reduce the search space. 
For example, we will only consider mappings 
that compare similar feature types (i.e., holes 
map to holes, not to pockets). Additional con- 
straints about vertex degree and size, location, 
and orientation can also be considered. 

We exploit this knowledge to create tractable methods 
for manufacturing similarity comparisons among solid 
models. 

term of the AlliedSignal Corporation, Federal Manufacturing Systems, 
presently part of Honeywell (soon to be part of General Electric Corpo- 
ration). 

This paper presents our algorithms as well as empirical 
experiments based on Allied Signal’s FBMach Machining 
Feature Recognition Husk on a set of 259 CAD models 
from the National Design Repository. The primary contri- 
bution of this research is our overall approach to performing 
machining similarity comparisons among manufactured ar- 
tifacts found in modem engineering databases. Ours is the 
first fully automated technique for machining feature-based 
comparisons of mechanical artifacts. To achieve this end, 
this work has created novel data structures, heuristic search 
and graph comparison techniques that can be applied to a 
number of important problems in engineering databases and 
manufacturing process planning. We believe that our work 
creates part of a foundation that will advance our abilities to 
manage digital data in distributed engineering enterprises. 

2. Background and Related Work 

In engineering practice, indexing of parts and part fam- 
ilies had been done with group technology coding [39]. 
Group technology facilitated process planning and cell- 
based manufacturing by imposing a classification scheme 
on individual machined parts. GT codes specified classes 
using alphanumeric strings. These techniques were devel- 
oped prior to the advent of inexpensive computer technol- 
ogy, hence they are not rigorously defined and are intended 
for human, not machine, interpretation. At one level, we 
see our research as augmenting traditional group technol- 
ogy coding schemes by providing a completely digital pro- 
cess for storage and comparison of solid models. It should 
be noted, however, that at other levels the approach we ad- 
vocate is not limited to categorization of solid models of 
machined parts. In recent experiments, we have begun to 
study how our graph-based approaches can be used to index 
assemblies, design process knowledge, and CAD data from 
other domains (e.g., AEC). 

2.1. Machining Feature Recognition 

Primarily in the areas of manufacturing process plan- 
ning and solid modeling, past research efforts have devel- 
oped a variety of techniques for reasoning about geomet- 
ric and topological information. Much research has been 
done in the area of automatic feature recognition from three- 
dimensional solid models [22, 33, 24, 25, 461. Marefat 
et al. [24, 27, 261 introduced a novel way of integrating 
evidence-based reasoning with geometry for process and 
inspection planning. Marefat’s recent work [3] has fo- 
cused on how to more effectively adapt new planning tech- 
niques to process planning. Vandenbrande, Han, and Re- 
quichia [45, 46, 21, 221 integrated knowledge-based sys- 
tems with solid modeling to identify machining features 
and perform process planning for machined parts. Some 
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of the author’s past work on geometric reasoning for man- 
ufacturing feature identification and process planning in- 
cludes [34, 33, 161. 

2.2. Comparisons of Shape and Solid Models 

The literature in this area is rather brief, consisting of 
results from engineering, computer science and, in particu- 
lar, computer vision communities. Elinson et al. [ 131 used 
feature-based reasoning for retrieval of solid models for use 
in variant process planning. Cicirello and Regli [30, 6, 71 
examined how to develop graph-based data structures and 
create heuristic similarity measures among artifacts-work 
which this paper extends to manufacturing feature-based 
similarity measurement. Other recent work from the En- 
gineering community includes techniques for automatic de- 
tection of part families [29] and topological similarity as- 
sessment of polyhedra [41]. 

The mainstream computer vision research has typically 
viewed shape matching in approximate domains, such as 
from models generated from range and sensor data. Work 
at the University of Utah [42, 12, 431 enables reverse engi- 
neering of designs by generating surface and machining fea- 
ture information off of range data collected from machined 
parts. Jain et al. and Virage Inc. [I51 have been working 
with Informix to build DataBlades for handling multimedia 
data such as pictures (CIF, JPEG, etc.) and, more recently, 
CAD data. Their approach is based on the creation of “fea- 
ture vectors” from 2D images that capture concepts such as 
color, density, and intensity patterns. Their work in extend- 
ing these techniques to 3D CAD data treats the CAD infor- 
mation as sets of point clouds (such as generated with range 
data) to be compared. While we believe these techniques 
hold promise, they fail to exploit the availability of 3D solid 
models representing the CAD data, as well as the engineer- 
ing information included with CAD data about tolerances, 
desigdmanufacturing features, and inter-part relationships 
that occur in  assemblies. 

One example where CAD data is employed is the 3D 
Base System [ 11, IO] from Dartmouth College. 3D Base 
operates by converting CAD models (a solid model or sur- 
face model) into an ICES-based neutral exchange file. A 
voxel (3D grid) representation is generated from the ICES 
data and then used to perform pair-wise comparisons among 
the CAD files using geometric moments of the voxels and 
by comparing other per-computed part features (such as sur- 
face area). Their work operates only on the gross-shapes of 
single parts and does not operate directly on the solid mod- 
els. It does not consider information pertaining to manufac- 
turing or design features, tolerances, or design knowledge 
that might be present in the corporate database; the vox- 
elization approach would be impractical to scale to electro- 
mechanical assemblies, where inter-part relationships and 

models of function and behavior are much more significant 
than gross shape properties. 

Many other techniques find their roots in computer vi.- 
sion and computer graphics [2,40,9]. These, while power.. 
ful, are not suitable for off-the-shelf use in similarity match.- 
ing of solid models. 

3. Technical Approach 

3.1. Machining Feature Recognition 

While our technical approach involves automatic recog 
nition of machining features, this paper is not presenting 
specific new advances in feature recognition. The central 
contribution of this work is the methodology for machin- 
ing similarity comparison of solid models, which is inde- 
pendent of which feature recognizer and which set of ma- 
chining features one wishes to compare against. We impose 
three requirements on the feature recognition module: 

1 .  Recognizes Machining Features: Recognizers that. 
retum shape or form features are not of significant 
use in assessing machining similarity among artifacts 
As has been noted previously [18], machining features 
contain manufacturing process knowledge in addition 
to shape information. 

2. Recognizes Interacting Features: Feature interac- 
tions significantly influence the process plans and se- 
lection of machining operations and fixtures [35]. Fur- 
ther, all but the most trivial of machined parts have in- 
teracting features. 

3. Potential to Return Multiple Feature Interpreta- 
tions: In some cases it  might be useful to consider 
the feature space of available machining operations 
in order to assess the properties of an artifact. The 
problem of multiple interpretations has been widely 
studied [19] and greatly influences selection of pro- 
cess plans. Usingfeature cover (i.e., the total set of 
possible machining features) to create the index allows 
comparisons among artifacts to broaden the considera- 
tion to include parts with process plans that come from 
similarfeature spaces. 

There are many academic and research prototype feature 
identification systems. For a recent survey on machining 
feature recognition from solid models, interested readers 
are referred to [23]. In this research, we chose to use one of 
the few available industrial systems: the Feature-Based Ma- 
chining Husk (FBMach) [4, 51 from AlliedSignal, Federal 
Manufacturing Technologies in Kansas City. FBMach is a 
robust library of machining features and feature recognition 
algorithms. It comprises approximately 10 man-years of ef- 
fort and several hundreds of thousands of lines of code. 
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FBMach uses three different approaches to define sur- 
face features: ( I )  automatic recognition, (2) interactive 
recognition and (3) manual identification. The automatic 
recognition uses a procedural algorithm to search for fea- 
ture hints and then creates feature instances using the hints 
without user interaction. The interactive recognition allows 
the user to provide some hints for FBMach to use in gen- 
erating the feature instances. For example, the user may 
identify a pocket by selecting its bottom face. The man- 
ual identification allows the user to create a feature instance 
by adding each face to the feature individually and defining 
each face's role in the feature (side, bottom, top, etc.). FB- 
Mach implements a human-supervised reasoning approach, 
which has also been explored by van Houten [44] along a 
different direction. Such a human-supervised reasoning is 
often quite useful for producing good feature models. 

We used a slightly modified version of FBMach that 
translated unattributed ACIS . sat-based solid models into 
sets of STEP AP 224 [38] NC machining feature volumes. 
The feature sets retumed by FBMach were used to create 
the Model Dependency Graphs described in the next Sec- 
tion and were the basis of the empirical results described in 
Section 4. 

3.2. Definition and Generation of Model Depen- 
dency Graphs 

A Model Dependency Graph (MDG) is defined in [6] 
as a representation of the design features and inter- 
dependencies of those design features of a CAD model. 
This graph is a directed acyclic graph and has some unique 
characteristics. The nodes of this graph correspond to in- 
dividual design features. An edge between two nodes cor- 
responds to some spatial dependence between the features 
(i.e. a non-empty intersection of the feature volumes). The 
direction on the edges capture the order that design features 
were applied during the design phase. 

Observation: D-morphisms of Model Dependency 
Graphs. Let GI and GZ be two MDGs for the same solid 
model resulting from different orderings of a feature set 
F = { t o , .  . . ~ fn} (such as shown in Figure 1). GI and 
G:! are D-morphic. A proof of this property appeared 
previously in [6]. 

For a given pair of graphs G1 = (VI; E l )  and G.1 = 
(V2,Ez) a D-morphism is formally defined in [14] as a 
function f : VI + Vl such that for all (U,.) E El ei- 
ther ( f ( , u ) ,  f (u) )  E E2 or ( f (v ) ,  f (u ) )  E E2 and such that 
for all 'U E VI and U' E Vi if ( f ( u ) : * u ' )  E E2 then there 
exists a 'U E f-' ( U ' )  for which ( U :  U )  E El.  

As defined above, the model dependency graph is not im- 
mediately applicable to machining features. If we knew the 
order in which the machining operations were performed, 

then perhaps it would be directly applicable. In this case, 
the D-morphism property would also apply. In this paper 
we are considering machining features that are extracted 
post facto. We do not know what order they were performed 
and will not attempt to designate some arbitrary and mean- 
ingless ordering on the machine features. Rather we will 
exploit an undirected version of the MDG which we shall 
call the Undirected Model Dependency Graph. 

Undirected Model Dependency Graph: The undirected 
model dependency graph (UMDG) G = (V, E )  for a solid 
model is defined as a set of nodes G = {fo,. . . fn} where 
the fa are the machining features that have been extracted 
from the model. The edge set E of the UMDG can be de- 
finedas: E = {{fa,fJ}} suchthatvol(f , )nvol(f j )  # s}. 

. . i s - -  -=. 
/ i /' 

Figure 1. (From [SI) Pictured is a single solid 
model and several alternative feature-based 
models, and one possible CSG tree, that can 
produce it. On the right are the MDGs for 
each of these alternatives-note that they are 
all D-morphic to one another. 

3.3. Part Retrieval 

To compare the similarity of two solid models, compute 
the size of the largest common subgraph (LCS) of the corre- 
sponding UMDGs. The largest common subgraph problem 
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is to find a pair of subgraphs, one from each of the two input 
graphs, such that the subgraphs in question are isomorphic 
to each other and the largest such subgraphs in terms of the 
number of edges. As noted earlier, the largest common sub- 
graph problem (LCS) is NP-complete and, the existence of 
an algorithm computable in polynomial time is not likely to 
exist. 

We are primarily concemed with the manufacturing fea- 
ture similarity among artifacts. Hence, knowing the abso- 
lute largest common subgraph of the UMDGs is not neces- 
sary. Instead, a “large enough” common subgraph is sought. 
There exist some inexact solutions in the literature including 
an approach using a two-stage Hopfield neural network [37] 
and a meta-optimized genetic algorithm [SI. There are also 
some inexact solutions to the very closely related problem 
of error-correcting isomorphism including a decision tree 
approach [28] ,  a linear programming approach [I], and a 
genetic algorithm [47]. 

We develop an heuristic measure method for the com- 
putation of the LCS based on a variant of iterative im- 
provement search (specifically, hill-climbing/gradient de- 
scent) [36]. To further refine and narrow the search space, 
our algorithm utilizes the domain knowledge present in the 
CAD model. For example, we will only consider mappings 
that compare similar feature types (i.e., holes map to holes, 
not to pockets). Additional constraints about vertex degree 
and size, location, and orientation can also be considered. 

The following sections present our approach. While this 
is not guaranteed to find an isomorphism if one exists, i t  al- 
lows for a measure of manufacturing similarity based on the 
best result obtained from executing some number of restarts 
of the algorithm. 

3.4. MDG Approximate Matching Algorithm 

In searching for the LCS, first, arbitrarily choose an ini- 
tial mapping between the nodes of the two graphs (i.e., for 
each node of G1 choose at random a node of Gz such that no 
two nodes of G1 are mapped to the same node of G2). Next, 
swap the mappings of the two nodes that reduce the value 
of the evaluation function the most. If there is no swap that 
reduces the value of the evaluation function, but there are 
swaps that result in the same value (i.e., a plateau has been 
reached), choose one of those at random. The algorithm 
ends when either every possible swap increases the value 
of the evaluation function or it makes P random moves on 
the plateau. Values of P ranging from constant values to 
P = ]VI IZ! (where VI is the vertex set in the smaller graph) 
have been experimented with. 

The evaluation function is the count of the number 
of mismatched edges. That is, the evaluation func- 
tion, H = [El such that G1 = (V1:El) is the 
smaller of the two graphs being compared, G2 = 

(V2: Ex) is the larger of the two graphs, and E = 
{ ( U ;  ,U) E E1 such that (( (puired(u):  puired(.u)) # 
E2 A (puired(w),puired(u)) Ex)) V lubel(u) # 
lubel(paired(u)) V lubel(v) # lubel(puired(u))}.  As 
a measure of similarity employ the value H *  = 

where H1, . . , H ,  are the final values of H 
from up to 71 random restarts of the algorithm and El is 
the edge set of the smaller graph. The function “paired(x)” 
above retums the node y E V2 that is currently mapped to 
the node z E VI. The function “label(x)” used above re- 
tums the label, or attributes, of the node x. 

Algorithm 1: Largest Common Subgraph 
Input: G1 = (VI; E1);Gz = (Vz:Ez), the two graphs 
being tested. P is the number of moves to make on a plateau 
before giving up. 
Output: H = 0 if the LCS is found to correspond to a sub- 
graph isomorphism. Otherwise, H is returned where H is 
the number of mismatched edges when the algorithm halts. 
LCSGRADIENTDESCENT(G~:  G2: P )  

( 2 )  i = 0 
( 1 )  Pairings = GETRANDOMPAlRINGS(G~, G2) 

(3) BestResult = H ( G 1 ,  G2,Pairings) 
(4) 
( 5 )  if H(G1,G2,APPLYSWAP(Pairings,BestSwap)) < 

(7) Pairings = APPLYSWAP(Pairings,BestSwap) 
(8) i = O  
( 9 )  BestResult = H(G1,G2,  Pairings) 
( I O )  else 
( 1 1 )  

(12) Pairings = 

(14) i = i + l  
(15) else 
(16) i = P  
(17) return BestResult 

while (BestResult > 0) A (i < P )  

BestResult 

if H(G1,  G2. APPLYSWAP(Pairings,BestSwap)) = 
BestResult 

APPLYSWAP(Pairings, BestSwap) 

The node labels may contain as little or as much informa- 
tion as you choose. For the experiments that are described 
later, the node labels were simply the type of feature, such 
as “hole” or “pocket”. However, by incorporating more in- 
formation into the node labels such as dimensions or ori- 
entation, we can further restrict allowable mappings which 
will increase the algorithm’s performance by reducing the 
search space. Incorporating more information in the node 
labels will also obtain a more meaningful similarity mea- 
sure. For example, by incorporating a notion of dimension 
into the labels then a really large block with a tiny hole will 
not be found similar to a little block with a larger hole. 

Algorithm 1 is the algorithm developed and described 
for computing the largest common subgraph using itera- 
tive improvement. In the algorithm, Pairings refers to 
the mapping between the nodes of the two graphs. And 
GETRANDOMPAIRINGS retums a random mapping as de- 
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(a) TEAM and TEAM-2 

(b) Query Results 

Figure 2. Two of the test parts from the DOE TEAM Project. Note that, while they appear very similar, 
they have variations in features, geometry and topology-as well as orientation with respect to the 
world coordinate system. Both of these parts are available from the National Design Repository at 
http://www.designrepository.org. 

Algorithm 2: Similarity 
Input: G1 = (V1,El),Gz = (VZ,&), the two graphs 
being compared. R is the number of restarts. 
Output: S = 0 if the smaller of the two graphs is the largest 
common subgraph. Otherwise, S is returned where S is 
the smallest result of R restarts of LCSGradientDescent di- 
vided by the number of edges in the smaller of the two input 
graphs. 
SIMILARITY(G~,  G z ,  R) 

i = l  
BestResultThusFar = LCSGRADIENTDESCENT(G~, Gz, P )  
while (BestResultThusFar > 0) A (i < R) 

BestResultThusFar = min {BestResultThusFar, 
LCSGRADIENTDESCENT(G~, Gz,  P )  } 
i = i + l  

B e s t R e s u l t T h u s F a r  
mintlEi  l,lEz I }  

scribed above. H is the evaluation function that counts the 
number of mismatched edges given two graphs and a map- 
ping between the nodes in these two graphs. BestSwap is 
the swap from the set of all possible swaps between pair- 
ings that results in a mapping with the smallest value for H .  
APPLYS WAP retums the mapping that results from applying 
the given swap to the given mapping. The algorithm is of 
polynomial time complexity. It takes O(N’) time to choose 
the best swap. In the worst possible case, by choosing the 
best swap at each step the evaluation function is simply re- 
duced by one and therefore can look for the best swap as 
many as IEl times. It takes time in O(lE1) to compute the 

evaluation function. Also in this worst case, the algorithm 
reaches a plateau as often as possible and takes P random 
moves on each of these plateau before finding the swap that 
reduces the evaluation function. So therefore the worst case 
complexityofthealgorithmisO(P*E’+P*E*N‘). If P 
is aconstant then the complexity is simply O(E2+E*N’).  
To obtain a similarity measure, the smallest result of T exe- 
cutions of this algorithm is divided by the number of edges 
in the smaller of the graphs. Algorithm 2 is the random 
restart algorithm for similarity assessment. The similar- 
ity algorithm simply calls the matching algorithm T times. 
Since T is constant the complexity is O(E’ * N ’ ) .  

4. Empirical Results 

We ran the FF3Mach feature recognizer over a set of 259 
solid models for real world and realistic machined parts. 
The parts were chosen from the National Design Repository 
and the feature output was used to generate MDGs for each 
of the models-these MDGs formed the indexing scheme 
against which we performed queries. The parts were se- 
lected based on their diversity and that they were machined 
parts, many of which were from industry. We conducted 
several “query by example” experiments, selecting a rep- 
resentative solid model as a target and letting our matcher 
estimate the distance from the other models in the dataset to 
the target. 
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Query Model 

Figure 3. The Simple Bracket example, orig- 
inally from [17]. When used as a query, 
the query processor identifies several parts, 
including variations on the bracket, in the 
"most similar" category. 

Testbed Description: The National Design Repository. 
The National Design Repository [32, 311 is a digital library 
of Computer-Aided Design (CAD) models and engineering 
designs from a variety of domains. The objective is to fur- 
ther the state-of-the-art in academic and industrial research 
in Computer-Aided Engineering by building a public cata- 
log of real-world design examples. The Repository provides 
benchmark designs in a variety of formats to serve as refer- 
ence data to aide developers and students. 

The Repository currently contains over 55,000 files 
maintained in multiple data file formats'. Contribu- 
tions have been made by many major research lab- 
oratories, companies and academic institutions. Cur- 
rently there are 10 gigabytes of CAD models and re- 
lated information. All data is freely available for users 
around the world. More information is available at 
http://www.designrepository.org. 

How to interpret the histograms and model matching 
results. Figures 2 to 5 give histograms of the results of 
running a comparison of the query model (shown in the 
upper-left of each Figure) against the MDGs of all of the 
other models indexed by FBMach in the Design Reposi- 
tory. Reading the histograms from left-to-right, the parts on 
the left are more similar to the query and the parts on in the 
right most buckets are the least similar from a machining 
standpoint. 

The distance between solid models is measured as the 

'This includes solid models in STEP AP 203, ACIS . sat, Autodesk 
. dxf and . dwg,  ICES, Bentley . dgn, Parasolid . xmt and other formats 

/ O  az p' P" I"' p. 

Figure 4. The Bracket example, originally 
from [16]. Several variations on the bracket 
appear in the near hits buckets of the his- 
togram. 

minimal percentage of mismatched edges as calculated over 
the course of several runs of the LCS approximate MDG 
matcher. Referring to the histograms, the vertical axis (Y 
axis) is a count of the number of solid models falling into 
each one of the six buckets; the horizontal X axis is the per- 
centage of mismatched MDG edges (i.e., the ratio of mis- 
matched edges to total number of edges in the smaller of the 
two MDGs). For example, referring to Figure 2 (c), there 
were 5 models whose MDG's exactly matched (or were em- 
beddable in) that of the query model; 3 models with 20% or 
fewer mismatched edges; 5 models with 21%-to-40% mis- 
matched edges; 15 with 41%-60% mismatches; 23 models 
with 61%-to-80%; and 208 models with greater than 80% 
mismatches. In this way, the histograms show a partition 
of the parts into groups based on the estimated distance be- 
tween their MDG and the MDG of the query object. 

The comparisons, as noted in Section 3, amounts to 
a subgraph isomorphism check and distance measure, the 
CPU time needed to execute these checks were quite 
reasonable-often running in real time. We hypothesize 
this performance is achieved because we are operating on 
labeled graphs and that the iterative improvement approach 
allows us to control the duration of the search. In this class 
of experiments, we ran the search with 10 random restarts 
and took the best matches off of the 10 trials. Specific CPU 
times from a Sun UltraSPARC 30 workstation are noted be- 
low with each example. 

Four Example Queries. Four (4) of the parts in the 
Repository were selected as query models. Their selection 
was based on the knowledge that, in each case, there were 
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Figure 5. The Socket example, originally 
from [33]. A variations on the socket appears 
in the nearest hit bucket. 

models existing in the Repository which indeed would have 
similar process plans. 

TEAM Part: Figures 2 (a) and (b) show the two TEAM 
Parts, from the US Department of Energy's Technolo- 
gies Enabling Agile Manufacturing (TEAM) Project. 
Note that they are both three axis machined parts with 
minor variations in features, geometry and topology. 
When TEAM2 was used as a query (Figure 2 (b)), 
TEAM (Figure 2 (a)) and several other three axis ma- 
chined parts with similar features and topology appear 
in the near hit category. For this query, it took 304.71 
CPU seconds to search across all 259 models. 

Simple Bracket: Figure 3 shows a simple bracket, a part 
with about a dozen possible machining feature that can 
be made in three or four set ups (depending on toler- 
ance constraints). The histogram shows the result of 
comparing the features in this model to those of the 
others in our Repository. For this query, i t  took 5.4 
CPU seconds to search across all 259 models. 

Bracket: Figure 4 shows a more complex bracket struc- 
ture. The histogram of results from this query show 
two variations on the bracket appearing in the left-most 
classes of models. Note that these variations change 
the setups and the feature types (drilled holes to ma- 
chined slots) but have similar shape properties. Further 
note that the vast majority of models fall in to the least 
similar categories. For this query, it took 21.27 CPU 
seconds to search across all 259 models. 

Socket: Figure 5 shows the Socket example, consisting of 
22 machining feature instances and machinable in four 

setups. Note that a near duplicate of the socket appears 
in the most similar category. For this query, it took 
95.44 CPU seconds to search across all 259 models. 

5. Discussion and Conclusions 

This paper presented our approach to using machin- 
ing features as an index-retrieval mechanism for storing 
solid models. We believe that this work represents the the 
first fully automated technique for machining feature-based 
comparisons of mechanical artifacts. Our hope is that this 
type of approach, combining raw b-Rep data with machin- 
ing feature knowledge, will enable to radical changes in the 
way in which design data is managed in modem engineer- 
ing enterprises. 

Our approach enables us to interrogate large databases 
of solid models and perform queries based on manufactur- 
ing similarities among the artifacts. While we have not yet 
performed a comprehensive analysis of the manufacturing 
data for each of the parts in our Design Repository, our em- 
pirical results suggest that this is a promising approach to 
information and data management for design and manufac- 
turing process knowledge. 

Research Contributions and Future Work. 
research contributions of this work include: 

A Model Indexing and Query Scheme: We showed that 
the MDG is a useful mechanism for archival and re- 
trieval of models in CAD databases and can be em- 
ployed using a "query by example" paradigm. Us- 
ing algorithms for computing the largest common 
subgraph, and introducing some engineering domain 
knowledge, we have created a general technique for 
archiving large numbers of solid models and retrieving 
them based on the similarity of their machining fea- 
tures. We believe that this technique can be refined 
and will have impact on how CAD data is stored and 
managed. 

Some of the 

Variational Process Planning Search Engine: Based on 
the MDG, one can create query artifacts that partition 
the database of solid models into different morphism 
classes-based on how similar in structure each model 
is to the query model. We believe that this approach 
can be refined to detect meaningful part classes and 
families in large sets of engineering models. This can 
form the basis for more intelligent Product Data Man- 
agement (PDM) systems and tools for variational de- 
sign and variant process planning. 

Process Selection and Cost Estimation Engine: 
Corporate Design and Manufacturing databases 
often store manufacturing cost and process data. 

183 



With the techniques presented, we can design Active 
CAD Agents that assist designers during detailed 
design by comparing the in-process design artifact to 
those previously created. In this way, the agent can 
provide feedback on potential manufacturing process 
choices (e.g., when a design that is categorized as 
similar was made with stereolithography, perhaps 
stereolithography should be considered for the new 
design) and expected cost (e.g., using data from the 
existing process plan for similar parts). 

Currently, our research considers only plain, unattributed 
solid models-there are no tolerances, manufacturing at- 
tributes, surface finish specifications, etc. In the future, we 
believe that additional domain knowledge can be used to 
refine our techniques. Information about engineering toler- 
ances, surface finishes, constraints and parametrics, etc. all 
can be used to augment the basic techniques presented here. 
Further, we would like to explore how to implement multi- 
ple feature views onto the Repository by including feature 
data generated by different feature recognition techniques. 
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