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Introduction

• Question: How can we cover higher-valued points 
of solution-space in combinatorial domains 
efficiently?

• Search heuristics can provide a basis

• Heuristics are not infallible

• We must balance adherence to heuristic against 
possibility of missing better solutions

• Randomization as approach to hedging on this 
trade-off
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Dispatch Scheduling 
Policies

Local rules for prioritizing work on different 
resources and coordinating material flows

• Examples: FIFO, WSPT, ATC

Advantages:

• Simple, robust control regime

Disadvantages:

• Decisions tend to be myopic

• No one heuristic tends to dominate across 
varying production characteristics
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Some Characteristics of 
Dispatch Heuristics

• Typically quite sensitive to parameter settings

• Often tuned to individual problem 
instances during experimental evaluation

• Typically designed and validated under 
idealized modeling assumptions

• Adapted to account for additional 
constraints

Research question: Can the performance of 
such decision rules be improved by adding 
randomness?
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Amplifying Dispatch 
Heuristics

Starting assumption: We have a good heuristic, but its 
discriminatory power varies from context to context

Approach: Calibrate the degree of randomness in the 
heuristic’s choice to the level of uncertainty in a given 
decision context

Some Related Ideas:

• Limited Discrepancy Search [Harvey & Ginsberg 95]

• Depth-Bounded Discrepancy Search [Walsh 97]

• Heuristic Equivalency [Gomes, Selman, & Kautz 98]

• Heuristic-Biased Stochastic Sampling [Bresina 96]

• Random-PCP [Oddi & Smith 97], Iterative Flattening 
[Cesta, Oddi, & Smith 99]
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Limited Discrepancy Search 
(LDS)

[Harvey & Ginsberg, 1995]

• A systematic backtrack search procedure

• Iteration 0: follow search heuristic at each 
decision point

• Iteration j: systematically consider each solution 
trajectory with j discrepancies from the heuristic 
path

• Continue until feasible solution found or search-
space exhausted
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Depth-bounded Discrepancy 
Search

[Walsh, 1997]

• Assumes heuristic’s advice most fallible near 
root of search-space

• An iterative-deepening variation of LDS

• Iteration j: Perform LDS restricting discrepancies 
to depth j of search-space

• Continue until feasible solution found or search-
space exhausted  
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Iterative Sampling
[Langley, 1992]

• At each decision point, choose a branch of the search 
space at random until a leaf-node is reached.

• If an infeasible solution is found, return to root of search 
space and iterate. 

• If a feasible solution is found and if this solution is better 
than the best found so far, then replace the best found 
solution with this solution.  Return to root and iterate.

• A rather naïve approach:

• Assumes a large number of feasible solutions

• Assumes a large number of “good” solutions
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Heuristic-Biased Stochastic 
Sampling

[Bresina,1996]

• At each decision point, rank order the possible 
choices according to a search heuristic.  

• Choose branch of search space randomly but biased 
according to a function of this ranking.

• E.g., choose branch bi with probability:

• Continue as in Iterative Sampling.

• Assumes a good ordering heuristic.


j

j

i

brankbias

brankbias

))((

))((

Carnegie Mellon

Our Approach: WHISTLING

• Motivation: heuristic more or less discriminating from 
context to context.

• Same basic idea as in HBSS, but decisions are biased 
according to a function of the heuristic value.

• E.g., choose branch bi with probability:

• Eliminates the O(n log n) ranking step of HBSS
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Why “Wasp beHavior 
Inspired”?

• Algorithm’s name related to “how” the 
stochastic decision is computed

• Obvious method:

• Pass one: compute

• Generate random number

• Pass two: choose bi with probability:

• Wasp analogy reduces this to a single pass
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Wasp Behavior Model
[Theraulaz et al., 1991]

• Each wasp of the colony has a force variable Fw

• Any two wasps may engage in a dominance contest

• Wasp 1 defeats wasp 2 with probability:

• Winner’s force is increased; loser’s force decreased

• A social hierarchy formed over time

• Possible analogy between most dominant wasp and most 
“dominant” choice?
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WHISTLING: Wasp beHavior 
Inspired STochastic sampLING

• At a decision point in the search:

• Each choice represented by a “wasp”

• Initial force of wasp i:

• Tournament of dominance contests

• Wasp 0 competes against wasp 1

• Winner’s force Fw accumulates loser’s force Fl

• Loser drops out

• Winner competes against wasp 2, …
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Illustrative Example
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A Competing Approach

• Heuristic-Biased Stochastic Sampling (HBSS) 
[Bresina, AAAI-96]

• Bias is based on rank ordering 
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Computational Study

Experimental Design:

• Objective: Weighted tardiness

• Base heuristic: ATCS [Lee, Bhaskaran, and Pinedo 97]

• 120 problem instances 

• 60 jobs each, single machine

• Varying degrees of due-date tightness, due-date range, 

and setup severity

Comparative analysis of Whistling and HBSS 

approaches

• Evaluation of a spectrum of bias functions for each 

approach

• 1, 10, and 100 restarts considered
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Percentage Improvement 
over Deterministic ATCS Rule

13.63

17.21

0.88

6.40

38.98

HBSS

10

15.35

20.94

0.91

8.38

45.14

Whistling

10

Moderate 

setups

Severe 

setups

Tight 

due-dates

Medium 

due-dates

Loose 

due-dates

HBSS

100

18.93

24.37

1.83

10.73

52.38

20.16

27.03

1.71

13.73

55.35

Whistling

100

HBSS

1

6.69

4.34

0.21

1.47

14.86

6.86

8.12

0.04

2.13

20.29

Whistling

1# Restarts
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Whistling vs Discrepancy 
Search

• Same problem instances as in Whistling / HBSS 
comparison

• Comparative analysis of Whistling, LDS, and DDS

• 100 and 200 restarts considered for Whistling

• LDS:

• All single discrepancy solutions occurring in 1st

four decisions (230)

• All single discrepancy solutions (1770)

• DDS: To depth 2 (3539)
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Percentage Improvement 
over Deterministic ATCS Rule

21.61

26.98

2.12

13.63

57.14

LDS

1770

21.45

28.11

2.29

14.84

57.21

Whistling

200

Moderate 

setups

Severe 

setups

Tight 

due-dates

Medium 

due-dates

Loose 

due-dates

LDS

230

Whistling

100# Samples

18.59

25.08

1.81

11.32

52.37

20.16

27.03

1.71

13.73

55.35

DDS

3539

20.82

26.36

1.83

12.18

56.75
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CPU Time

HBSS HBSS Whistling Whistling Whistling LDS LDS DDS

10 100 10 100 200 230 1770 3539

1.59 s 15.46 0.16 s 1.50 s 3.01 s 1.46 6.04 20.94 

•Note:

•100 iterations of Whistling in same time as 10 iterations of HBSS

•100 iterations of Whistling in same time as considering all 230 

single discrepancy solutions in first 4 decisions

•200 iterations of Whistling in half the time of considering all 1770 

single discrepancy solutions

•200 iterations of Whistling in a seventh of the time to consider the 

3539 solutions of a DDS to depth 2
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